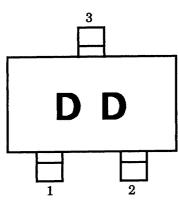
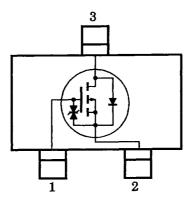

SSM3J02F

Unit: mm

- Small package
- Low on resistance : $R_{on} = 0.5 \Omega (max) (@V_{GS} = -4 V)$
 - : Ron = 0.7 Ω (max) (@VGS = -2.5 V)
- Low gate threshold voltage


Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V _{DS}	-30	V	
Gate-source voltage		V _{GSS}	±10	V	
Drain current	DC	۱ _D	-600	mA	
	Pulse	I _{DP}	-1200		
Drain power dissipation (Ta = 25°C)		PD	200	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	



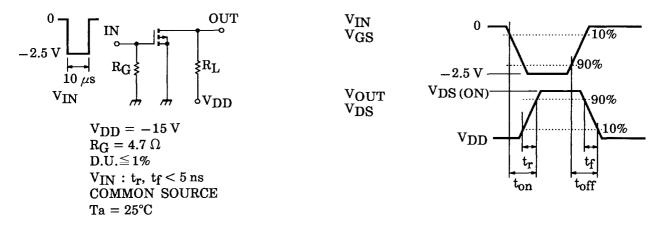
Weight: 0.012 g (typ.)

Marking

Equivalent Circuit

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.


Electrical Characteristics (Ta = 25°C)

SSM3J02F

Chara	acteristics	Symbol	Test Condition		Min	Тур.	Max	Unit
Gate leakage cur	rent	$I_{GSS} \qquad V_{GS} = \pm 10 \text{ V}, V_{DS} = 0$			_		±1	μA
Drain-source brea	akdown voltage	V (BR) DSS	$I_D = -1 \text{ mA}, V_{GS} = 0$		-30		_	V
Drain cut-off curre	ent	IDSS	$V_{DS} = -30 V, V_{GS} = 0$			_	-1	μA
Gate threshold vo	oltage	V _{th}	$V_{DS} = -3 \text{ V}, \text{ I}_{D} = -0.1 \text{ mA}$		-0.6		-1.1	V
Forward transfer	admittance	Y _{fs}	$V_{DS} = -3 \text{ V}, \text{ I}_{D} = -0.3 \text{ A}$	(Note)	0.6		_	S
Drain-source ON resistance		R _{DS (ON)}	$I_D = -0.3 \text{ A}, V_{GS} = -4 \text{ V}$	(Note)		0.4	0.5	Ω
			$I_D = -0.3 \text{ A}, \text{ V}_{GS} = -2.5 \text{ V}$	(Note)		0.55	0.7	
Input capacitance C _{iss}		C _{iss}	$V_{DS} = -10 V, V_{GS} = 0, f = 1 MHz$			150	_	pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 V, V_{GS} = 0, f = 1 MHz$			21	_	pF
Output capacitance		C _{oss}	$V_{DS} = -10 V, V_{GS} = 0, f = 1 MHz$			61	_	pF
Switching time	Turn-on time	t _{on}	V _{DD} = -15 V, I _D = -0.3 A,		_	55	_	
	Turn-off time	t _{off}	$V_{GS} = 0 - 2.5 V, R_G = 4.7 \Omega$		_	52	_	ns

Note: Pulse test

Switching Time Test Circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = $-100~\mu A$ for this product. For normal switching operation, V_{GS} (ON) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(Relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (ON))

Please take this into consideration for using the device.

 V_{GS} recommended voltage of -2.5~V or higher to turn on this product.